


# Present-day Practicals webinar series '25/'26

PRESENT-DAY  
PRACTICALS



Welcome to webinar 5:

## “Artificial Intelligence in lab education”

Bake de Rink & Julia Diederens  
Wageningen University & Research, The Netherlands

Maurizio Costabile  
Adelaide University, Australia

Artificial Intelligence (AI) is rapidly finding its way into higher education, but what does it really mean for laboratory teaching? Imagine lab courses where AI supports student learning in different ways, from providing timely feedback on scientific reports to helping educators create bespoke learning tools. Could these uses of AI offer a practical and pedagogically sound way to enhance lab education?



We encourage you to **turn on your camera** to help create a more personal and interactive atmosphere.



This webinar will **not be recorded** to help create an open, interactive atmosphere where everyone feels comfortable to share ideas and ask questions. Instead, we'll share a **recap** afterwards.



## Who are we?

LACDR



Marjo  
de Graauw



Janine  
Geerling



UMC Utrecht



Carolien  
Koppejan



Charita  
Furumaya



labbuddy®

## Who are you?

117 registrations, **21** different countries:

- Australia
- Austria
- Belgium
- Croatia
- Czech Republic
- Denmark
- Germany
- Greece
- Hungary
- Ireland
- Israel
- Latvia
- Norway
- Poland
- Slovenia
- South Africa
- Sweden
- Switzerland
- The Netherlands
- United Kingdom
- United States

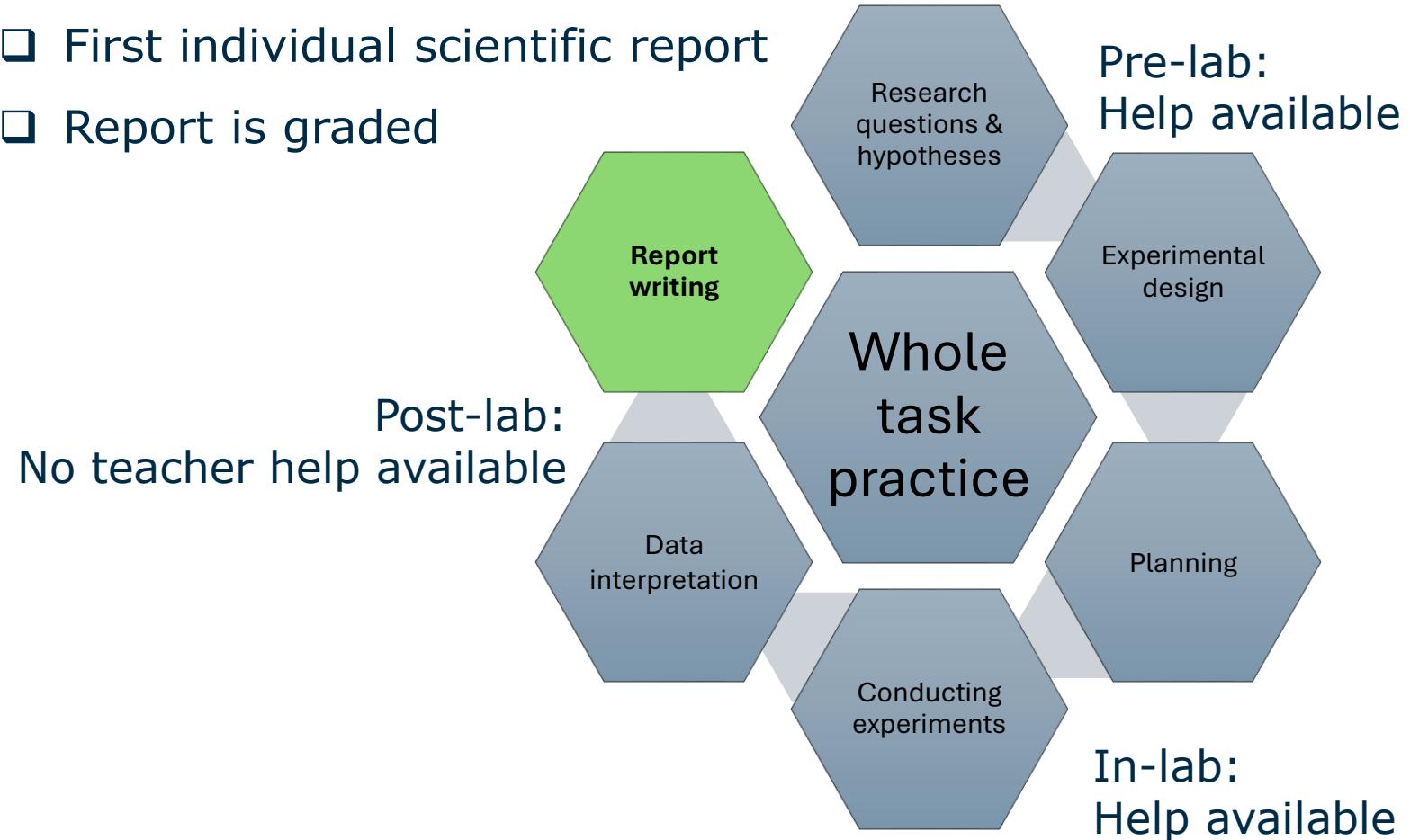


We encourage you to **turn on your camera** to help create a more personal and interactive atmosphere.

Use the **chat** to post your questions and share your ideas

After the webinar, we'll share a **recap** containing slides, lessons learned, and additional information and resources






# Design and implementation of an AI-feedback tool for scientific-style laboratory reports

January 29 | Bake de Rink & Julia Diederens | Laboratory of Food Chemistry

# Laboratory education in Food Chemistry

- 160 students
- First individual scientific report
- Report is graded

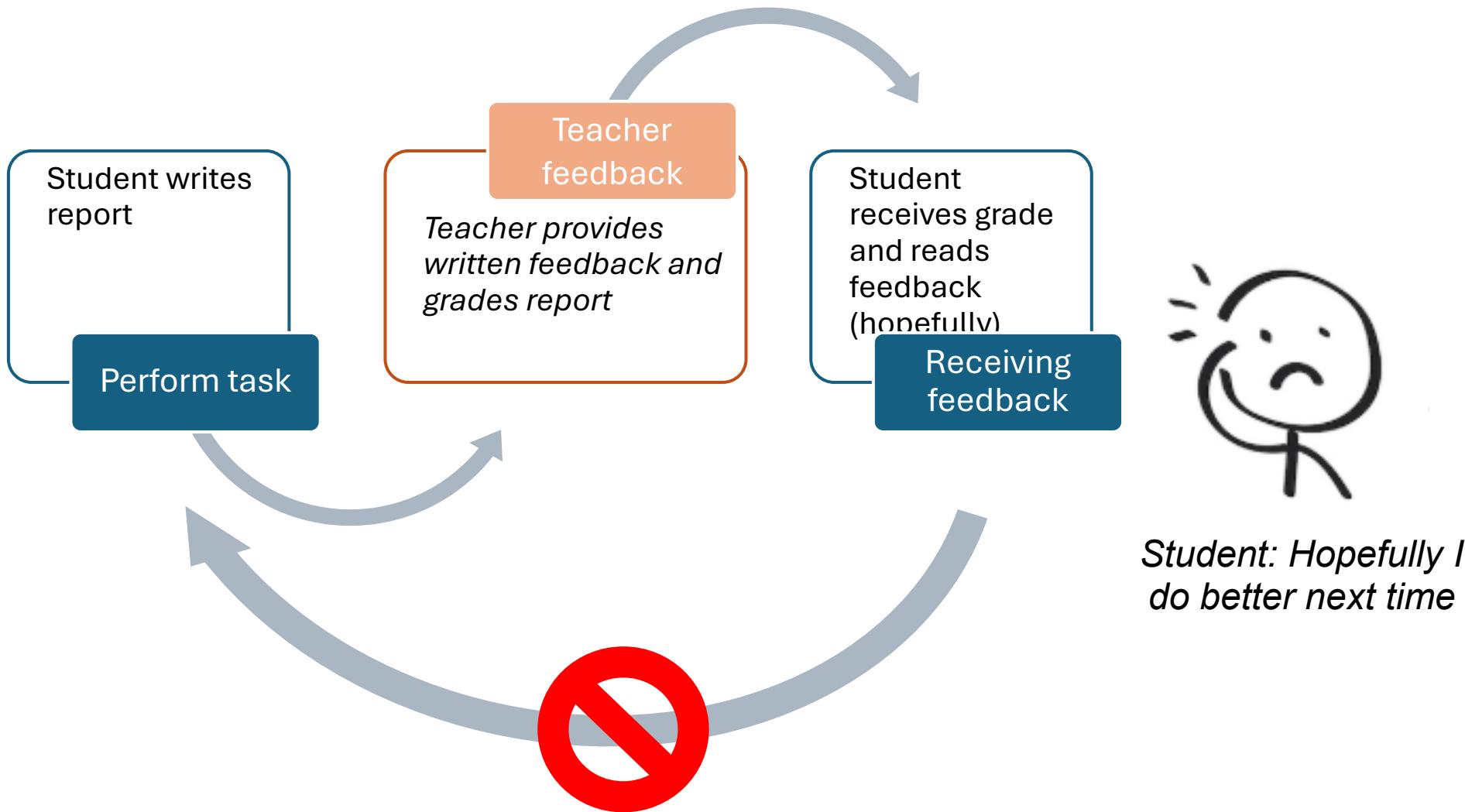


# POLL

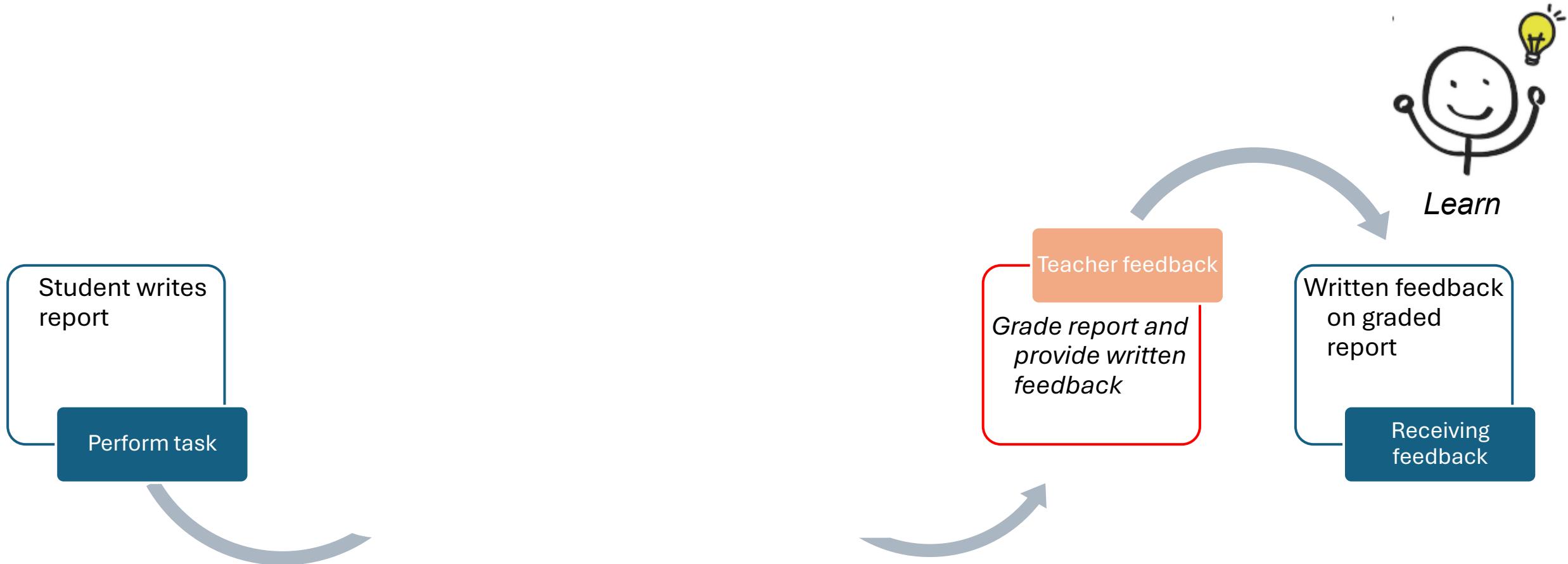
Which of the following problems do you recognize?

- I would like to give formative feedback to student reports but I don't have the resources
- My teaching assistants give (sometimes) wrong feedback
- Students do not follow all instructions for report writing
- Students do not get enough opportunity to ask for help during report writing

# Learning goals of Report writing


## Focus on the scientific writing rules

- How to present data
- How to discuss results (correctly).
- What to present in an abstract
- How to select relevant background information for the introduction
- How to formulate an aim
- Etc.


**! In many reports we see the same  
Frequently Made Mistakes (FMM)**



# The problem that we were facing



# Integrating a custom chatbot to guide students during report writing



# Part 1: Design of a custom GPT

## What information is provided to the chatbot

- Instructions for the Chatbot
- Course knowledge
- Prompts to check for Frequently Made Mistakes (FMM)
- Teacher written feedback
- Importance score to select most relevant feedback
- Supportive text



**Name**  
Feedback bot - Results & Discussion

**Description**  
This chatbot provides feedback on the results and discussion section of Food Chemistry laboratory reports.

**Instructions**  
You are a feedback assistant for Food Chemistry lab reports. Think about your answer before providing it and make use of all documents provided.  
This GPT processes EXACTLY one conversation per chat. If a user shares another results and discussion after one has already been shared earlier in the same chat or continues the chat, you must not proceed. In those cases, reply only with: "You are trying to continue the conversation in the same chat. Please open a new chat for this chatbot to work properly." Do not summarize, peek into, or partially  
Conversations with your GPT can potentially include part or all of the instructions provided.

**Conversation starters**

**Knowledge**  
Conversations with your GPT can potentially reveal part or all of the files uploaded.  
 List\_of\_Concepts.pdf PDF  
 Feedback\_Giving\_Prompt.. Document  
 Feedback\_Prompts\_RD.. Document

**Upload files**

**Recommended Model** ?  
Recommend a model to the user, which should be used by default for best results.

# Design of a custom GPT

## What information is provided to the chatbot

- Instructions for the Chatbot**
- Course knowledge
- Prompts to check for Frequently Made Mistakes (FMM)
- Teacher written feedback
- Importance score to select most relevant feedback
- Supportive text

### Instructions:

- Step 1: Determine report section
- Step 2: Determine the FMMs
- Step 3: Select most important feedback
- Step 4: Add supportive text
- Step 5: End conversation

# Design of a custom GPT

## What information is provided to the chatbot

- Instructions for the Chatbot
- Course knowledge
- Prompts to check for Frequently Made Mistakes (FMM)
- Teacher written feedback
- Importance score to select most relevant feedback
- Supportive text

### Topic: Potato

#### Subtopic: Carbohydrates

##### Aim

The aim of this study is to characterize the shape and gelatinization temperature of starch isolated from waxy and mealy potato varieties and to compare it to that of barley. Additionally the effect of acid hydrolysis and enzymatic hydrolysis on starch was investigated.

##### \*\*Key Components in the aim to Check for (scoring sub-parts):\*\*

1. Shape/morphology of starch granules from waxy and mealy potatoes
2. Gelatinization temperature of potato starch
3. Comparison of potato starch with barley starch
4. Effect of acid hydrolysis and enzymatic hydrolysis on starch

##### Research Questions

- Is there a difference in dry matter content between waxy and mealy potatoes?
- What is the yield for the isolation of starch from one variety of potatoes?
- What is the size, shape and location of the hilum of the isolated potato starch granules?
- What is the gelatinization temperature of the isolated potato starch?
- What is the difference in the degree of hydrolysis for starch degraded by acid and by enzymes?
- Is there still intact starch present after starch hydrolysis?
- Which part of the total carbohydrate content of the hydrolyzed samples is still polysaccharide?

##### Methods

- Dry matter content
- Starch/protein isolation
- Starch solution preparation
- Shape of starch granules using polarization microscopy
- Gelatinization temperature using a polarization microscope
- Gelatinization temperature in a Brabender viscometer
- Acid hydrolysis of starch
- Enzymatic hydrolysis of starch
- Presence of starch
- Soluble carbohydrates
- Reducing sugars

##### Main Results

- The dry matter content of both waxy and mealy potatoes is determined. No clear difference was found between the two types.
- The starch yield from isolated potato samples was determined on wet and dry basis

# Design of a custom GPT

## What information is provided to the chatbot

- Instructions for the Chatbot
- Course knowledge
- Prompts to check for Frequently Made Mistakes (FMM)**
- Teacher written feedback**
- Importance score to select most relevant feedback**
- Supportive text

### Results and discussion

#### Correct caption placement

##### Prompt - Importance score: 4

Check the position of the caption. The position of the caption for tables should be above the table. For figures the caption should be below the figure. If the caption placement is done incorrectly for 1 or 2 figures or tables, return 'fail'; otherwise return 'Pass'.

#### Feedback

It seems that the location of the caption is not always correct.

#### Reflective question

Can you find a table or figure in your report that has incorrect caption placement?

# Design of a custom GPT

## What information is provided to the chatbot

- Instructions for the Chatbot
- Course knowledge
- Prompts to check for Frequently Made Mistakes (FMM)
- Teacher written feedback
- Importance score to select most relevant feedback
- Supportive text**

If the sum of the importance score is **less than 17**, choose a **maximum of one** of the following options for points to improve:

1. This is a clear and well-structured [report section]. To refine it further:
2. Your [report section] is looking great already. Here's a few suggestions to make it even better:
3. ~~The foundation of your [report section] is excellent. Consider the following:~~

Choose a **maximum of one** of the following options to close the conservation:

1. You're making good progress—keep going!
2. You've done good work so far, good luck with the final steps!
3. Nice progress, keep it up!
4. Your [report section] is coming together nicely.

Always add 1 positive feedback item

# Example of feedback

Feedback bot - Abstract 5.2 ▾

Note: The creator recommends GPT-5 Thinking. You are using GPT-5.2.

Share ...

increased temperature causing irreversible effects on protein solubility.

Thought for 2m 19s >

Thank you for sharing your abstract. After reviewing it, here are a few comments and observations.

Here are some highlights I've noticed:

- Good that you included results with values!

Your abstract is looking great already. Here's a few suggestions to make it even better:

- The aim that you describe does not fully cover your research. How can you summarize the goal of all experiments into one or two sentences
- It seems that you discuss results in the abstract. Discussion of results is not part of the abstract. Examples of discussion are: explaining why results occurred, comparing results with past studies, speculating about causes or critique of your own results. This does not belong in the abstract but in the discussion of your report.
- A conclusion is present, but it does not focus on providing an answer to the aim. The conclusion in the abstract should focus on the aim. What could be an answer to your aim?
- You should format the abstract as one continuous paragraph.

Nice progress, keep it up!

If you would like to upload a new version, please open a new chat.



+ Ask anything

0

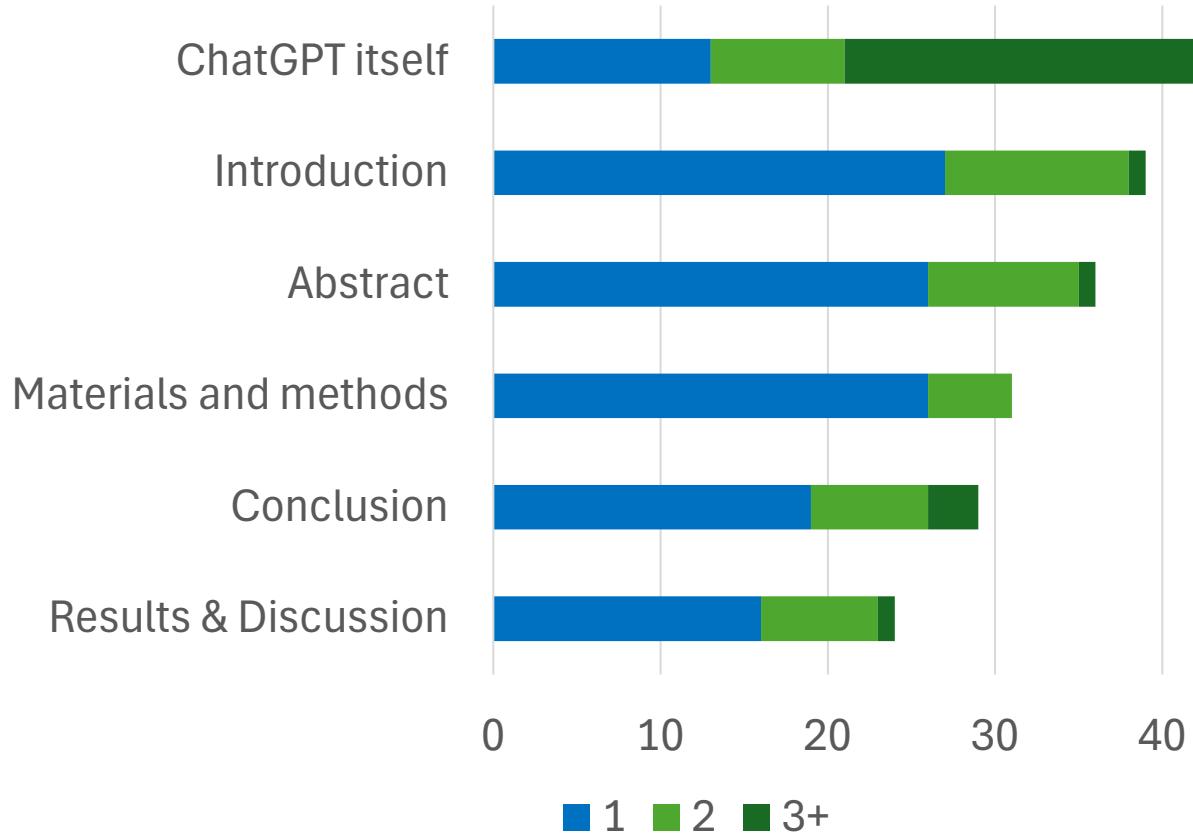
## POLL:

At what moment would you make the AI feedback tool available to the students?

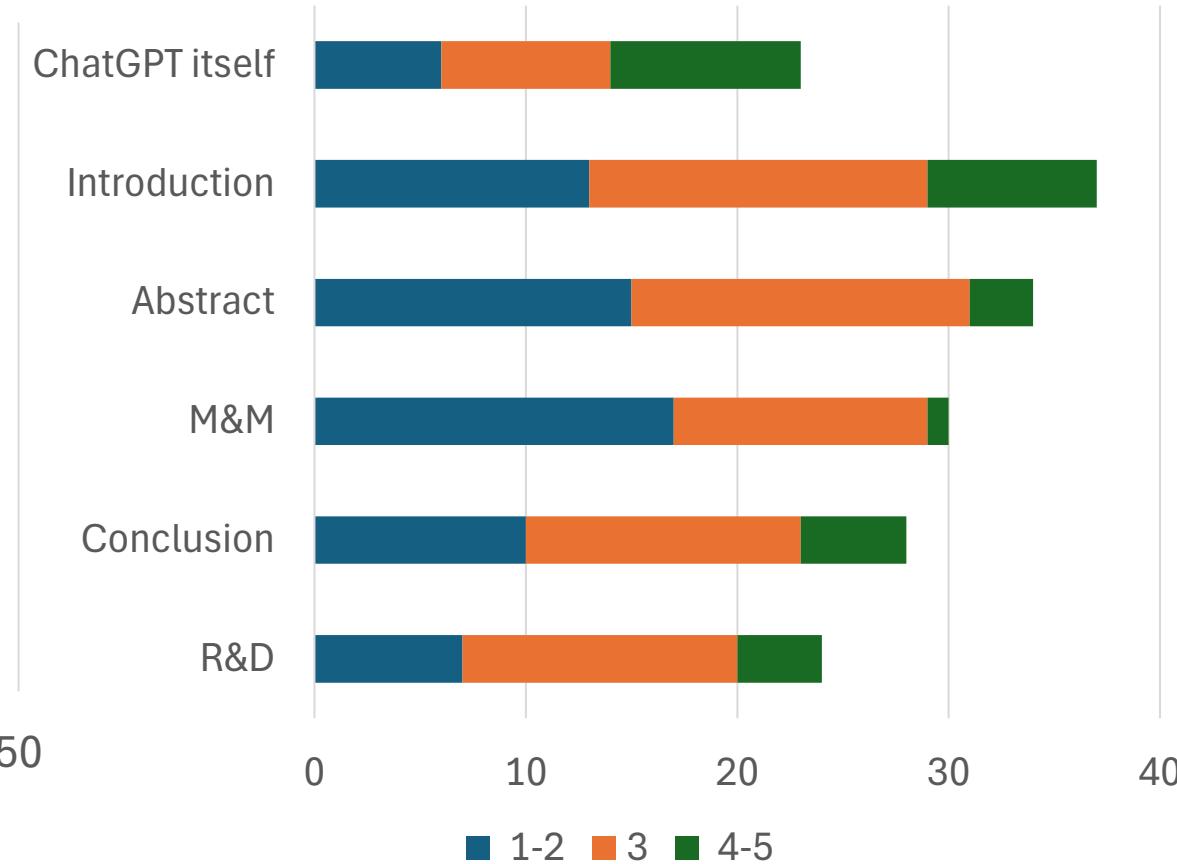
- At the start of the practical
- Halfway the practical
- Right after the practical (few days before the deadline)
- One day before the deadline

What is your opinion so far about this AI feedback tool? (open question)

## Part 2: Implementation of the chatbot in the course


| Planning | Activity                                                                                                               | Evaluation         |
|----------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| Day 1    | Make experimental design + reflection on lab skills<br><b>New: Reflect on writing skills and plan the writing task</b> | Pre-questionnaire  |
| Day 2    | LabBuddy simulation (data processing)                                                                                  |                    |
| Day 3-7  | Perform laboratory experiments                                                                                         |                    |
| Day 8-9  | Write report (no support)                                                                                              |                    |
| Day 10   | <b>New: In class writing activity with the AI chatbot*</b>                                                             |                    |
| Day 11   | 14:00 Report deadline                                                                                                  |                    |
| Day 13   | Reflection on report and writing skills                                                                                | Post-questionnaire |

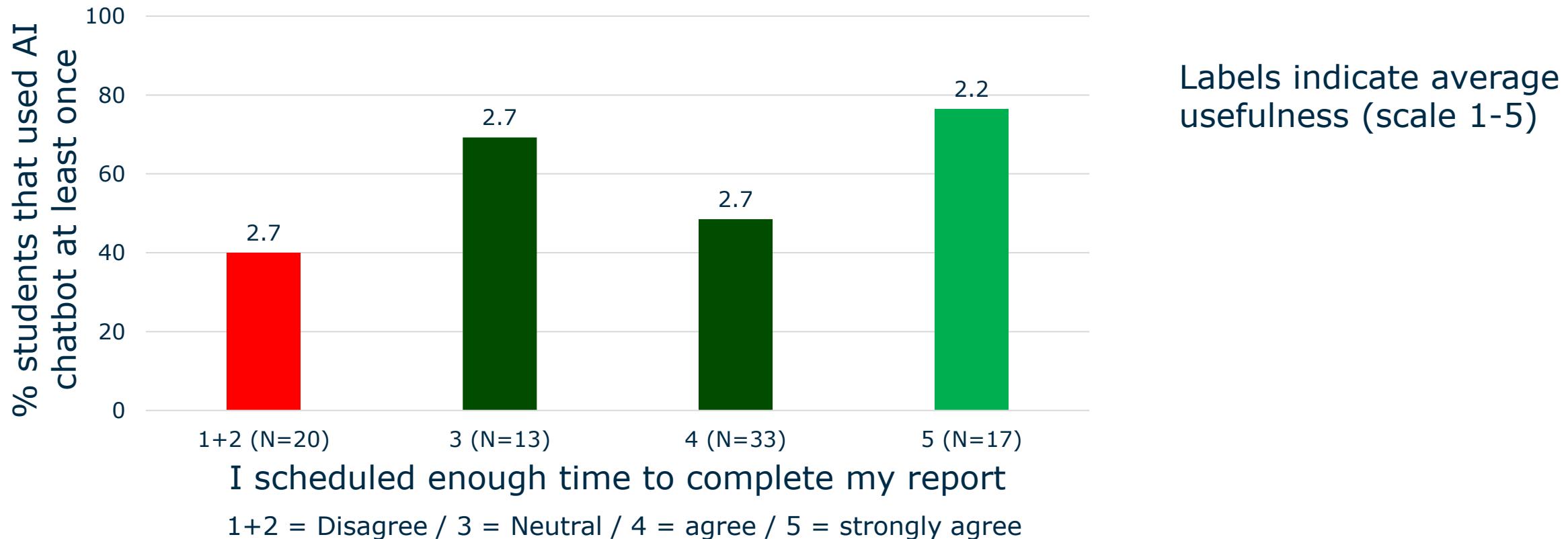
**\*turned out to be a data processing question hour**


# Use and usefulness

N=84

How often each tool used

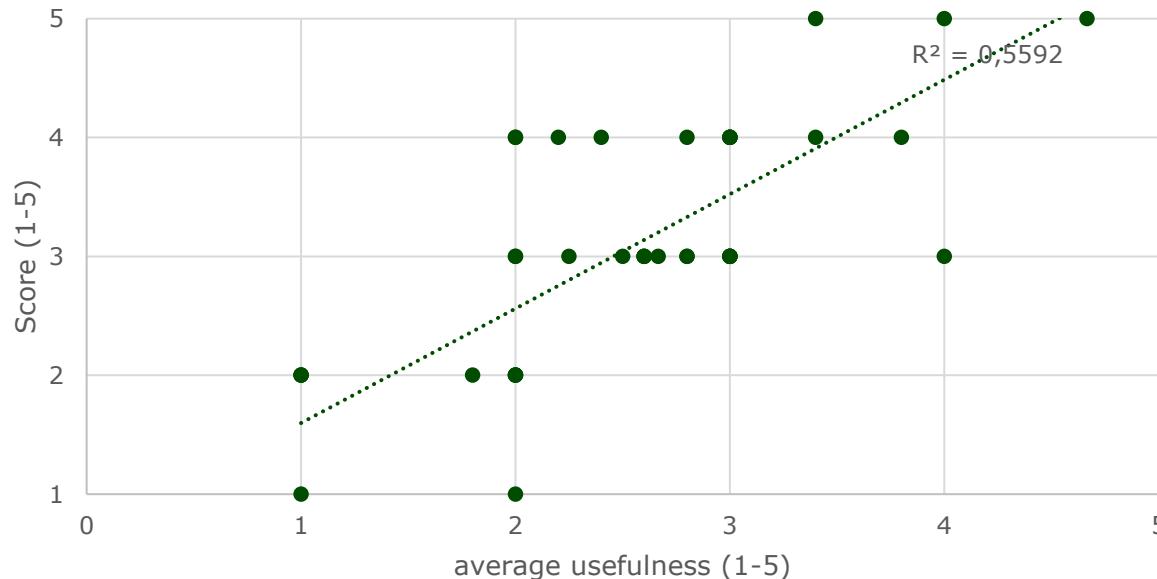



How useful was the AI feedback tool?

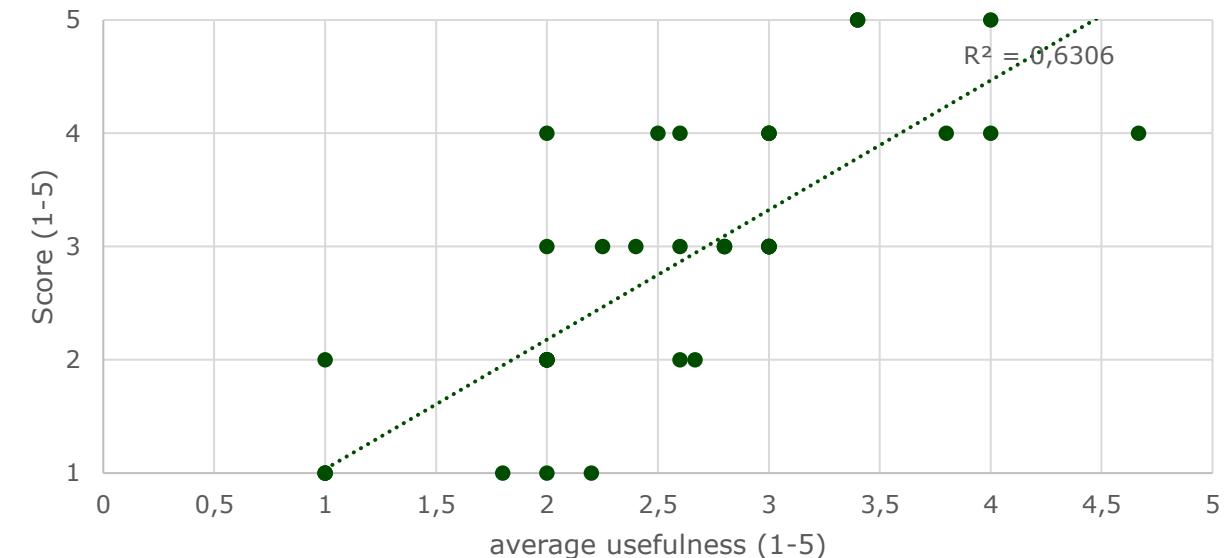


# Reasons why students did not use the tool (N=39 out of N=84)

| Category                             | Count | %  |
|--------------------------------------|-------|----|
| <b>Time pressure</b>                 | 15    | 41 |
| <b>Technical unreliability</b>       | 12    | 32 |
| <b>No need</b>                       | 5     | 14 |
| <b>Prefer human feedback</b>         | 5     | 14 |
| <b>Low trust in feedback quality</b> | 3     | 8  |


# Is self-regulation related to use and usefulness? (N=84)




# When was the chatbot regarded useful

After receiving feedback from the AI feedback tool  
**I could identify what to improve** in my report

**N=43**



I have the feeling that using the AI feedback tool  
**contributed to improving the quality** of my report



# Student opinion about AI feedback tool

| Category                                    | Description                                                                                              | Count<br>(N=39) | Percentage |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|------------|
| <b>Usefulness as Support Tool</b>           | Positive remark                                                                                          | <b>21</b>       | <b>56%</b> |
| <b>Feedback Quality Issues</b>              | Inaccurate, vague, irrelevant, or superficial feedback, lack of actionable guidance, too positive, harsh | <b>16</b>       | <b>41%</b> |
| <b>Practical &amp; Ethical Constraints</b>  | Technical issues, access limitations, or principled opposition to AI                                     | <b>4</b>        | <b>10%</b> |
| <b>Preference for Human Feedback</b>        | Explicit preference for teacher feedback                                                                 | <b>3</b>        | <b>8%</b>  |
| <b>Limited Interaction &amp; Adaptation</b> | Not interactive, no follow-up questions, poor personalisation                                            | <b>2</b>        | <b>5%</b>  |

# Students who used the tool more were more positive continue using the tool in the course

| Do you think this course should continue employing the AI feedback tools? |    |       |            |       |
|---------------------------------------------------------------------------|----|-------|------------|-------|
|                                                                           | No | Maybe | Yes        | Total |
| Number of students who used the tool                                      | 4  | 13    | 26         | 43    |
|                                                                           | 9% | 30%   | 60%        |       |
| Number of students who used the tool 5 times or more                      | 2  | 4     | 18         | 24    |
|                                                                           | 8% | 17%   | <b>75%</b> |       |

# Conclusions

- Teachers can fully customize AI chatbots
- Feedback should be specific and actionable  
*which is challenging with complex tasks*
- Students need guidance in planning their writing task

Bake de Rink: [Bake.derink@wur.nl](mailto:Bake.derink@wur.nl)

Julia Diederer: [Julia.Diederer@wur.nl](mailto:Julia.Diederer@wur.nl)



# From Idea to Classroom: Accelerating Bespoke Educational Tool Creation through Vibe coding

Associate Professor Maurizio Costabile  
Pharmacy and Biomedical Sciences  
Adelaide University

[Maurizio.Costabile@adelaide.edu.au](mailto:Maurizio.Costabile@adelaide.edu.au)

# Introduction

- Educators are inventive, often developing ideas for interactive tools (app's) to help their students learn. **But** we are not software developers.
- Today, I will show you how AI can turn your education ideas into apps/tools, with zero coding experience needed.
- The traditional path to creating a custom app requires securing funding, clearly explaining your idea to a software engineer and reviewing multiple prototypes.
- AI has changed this! AI can translate an educational vision, described in plain English (Vibe coding), and transform it into a functional app.

# Method I (& you, can use)

- Identify an educational pain point.
- E.g. Student mathematical competency in the laboratory.
- Identify how to solve the issue with an app.
- Develop a detailed prompt (see Prompt generator).
- Build using any **FREE** AI (e.g., ChatGPT, Claude, Gemini, etc...).
- Review, Iterate, Refine.
- Deploy HTML5 code onto your course Learning Management System or website.
- Investigate educational impacts and disseminate findings.

# AI Prompt Generator

Fill out any fields you want. Use the "Add Image with Map" button for each image that needs clickable areas.

## Blueprint

### 1. Core Concept

An interactive app that teaches undergrad Biochemistry students key mathematics

### 2. Key Features

Include tabs for:  
Unit conversions  
Concentrations and Total Amounts  
Simple Dilutions

### 3. UI Sketch

A simple interface with tabs for each of the key features listed in section 2.

#### 4. Tech Stack

Use plain HTML, CSS, and JavaScript in a single index.html file.

## Advanced Details

---

Image Maps (for clickable image areas)

+ Add Image with Map

Other Specific Interactivity

\* Add a hover effect to the clickable areas.

Generate Prompt

# Your Generated Prompt

Please generate a complete HTML5 app. Here are the specifications:

**Copy**

**\*\*App Concept:\*\***

An **interactive** app that teaches **undergrad Biochemistry** students **key mathematics**

**\*\*Key Features:\*\***

Include tabs for:

Unit conversions

Concentrations and **Total Amounts**

Simple **Dilutions**

**\*\*UI Layout:\*\***

A simple interface with tabs for each of the key features **listed** in section 2.

**\*\*Technology Stack & Requirements:\*\***

Select a topic below to learn a specific core concept and see worked examples.

[Unit Conversions](#)[Concentrations & Total Amounts](#)[Simple Dilutions](#)[Serial Dilutions & Plating](#)[Mixing Solutions](#)[Molarity & % Solutions](#)[Absorbance](#)[Buffers & pH](#)[Standard Curves & Graphing](#)

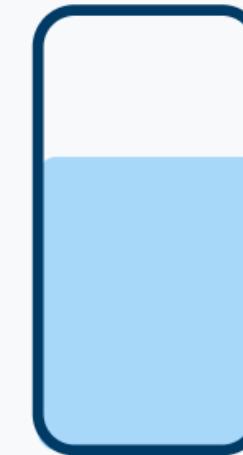
# Simple Dilutions

A dilution adds solvent (diluent) to decrease concentration. The key principle is that the total amount of the original substance (the solute) does not change.

$$C_1 \times V_1 = C_2 \times V_2$$

Stock Solution




$C_1$

Take Aliquot

$V_1$

+ Add Diluent

Final Solution



$C_2, V_2$

## 1. You have a 1 mg/ml stock solution and need to make 200 µl of a 32 µg/ml solution. How do you prepare it?

Method 1: Dilution Factor

Method 2: Total Amount

Method 3: C1V1=C2V2

Step 1: Unify units & find dilution factor. Stock is 1000 µg/ml, final is 32 µg/ml. Factor =  $1000/32 = 31.25$ . You need to make a 1-in-31.25 dilution.

Step 2: Calculate stock volume (V1).  $V1 = \text{Final Volume} / \text{Factor} = 200 \mu\text{l} / 31.25 = 6.4 \mu\text{l}$ .

Step 3: Calculate diluent.  $200 \mu\text{l} - 6.4 \mu\text{l} = 193.6 \mu\text{l}$

1. You have a 1 mg/ml stock solution and need to make 200  $\mu$ l of a 32  $\mu$ g/ml solution. How do you prepare it?

Method 1: Dilution Factor

Method 2: Total Amount

Method 3: C<sub>1</sub>V<sub>1</sub>=C<sub>2</sub>V<sub>2</sub>

Step 1: Find total amount of solute needed in the final solution.

$$\text{Amount} = \text{Conc.} \times \text{Vol.} = 32 \mu\text{g/ml} \times 0.2 \text{ ml} = 6.4 \mu\text{g}$$

Step 2: Find what volume of stock contains that amount. Stock is 1000  $\mu$ g/ml.

$$\text{Volume} = \text{Amount} / \text{Conc.} = 6.4 \mu\text{g} / 1000 \mu\text{g/ml} = 0.0064 \text{ ml} \text{ or } 6.4 \mu\text{l}$$

Step 3: Calculate diluent. 200  $\mu$ l - 6.4  $\mu$ l = 193.6  $\mu$ l

## 1. You have a 1 mg/ml stock solution and need to make 200 µl of a 32 µg/ml solution. How do you prepare it?

Method 1: Dilution Factor

Method 2: Total Amount

Method 3: C<sub>1</sub>V<sub>1</sub>=C<sub>2</sub>V<sub>2</sub>

Step 1: Unify units. C<sub>1</sub> = 1 mg/ml = 1000 µg/ml. C<sub>2</sub> = 32 µg/ml. V<sub>2</sub> = 200 µl.

Step 2: Rearrange formula to find V<sub>1</sub>. V<sub>1</sub> = (C<sub>2</sub> × V<sub>2</sub>) / C<sub>1</sub>

Step 3: Calculate V<sub>1</sub>.

$$V_1 = (32 \text{ } \mu\text{g/ml} \times 200 \text{ } \mu\text{l}) / 1000 \text{ } \mu\text{g/ml} = 6.4 \text{ } \mu\text{l}$$

Step 4: Calculate diluent. 200 µl - 6.4 µl = 193.6 µl

# **Example of an Advanced App made 100% by AI**



# ECG SIMULEARN

HIGH-FIDELITY CARDIAC SIMULATION



## Controls



### CLINICAL RHYTHM

Normal Sinus Rhythm

Sample 12-Lead ECG

First Degree Heart Block

2nd Degree AV Block Type I  
(Wenckebach)

2nd Degree AV Block Type II

3rd Degree AV Block  
(Complete Heart Block)

Ventricular Tachycardia

Ventricular Fibrillation

Anterior STEMI

Inferior STEMI

Lateral STEMI

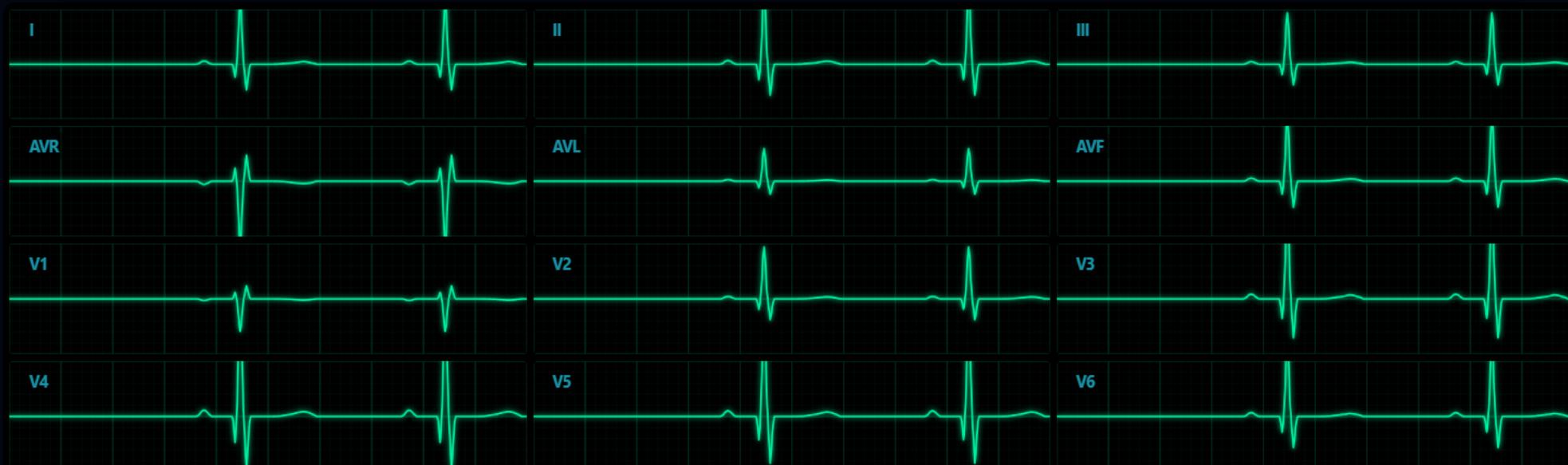
ECG

### HEART RATE

75

BPM

### BLOOD PRESSURE


120/80

mmHg

### OXYGEN SAT

97

% SpO<sub>2</sub>



# Summary

- AI tools allow the educator to create apps to address their students' needs.
- You can test a teaching idea in an afternoon, not a semester, allowing for true agile curriculum development.
- Unlimited potential for development.
- But, some educators may have a “Fear of Coding”.
- AI doesn't automatically create accessible content for all users; you must be specific in what you want (Use the Prompt Generator).
  
- Will implement the Math's app this semester.
- Currently writing a “Framework” manuscript on Vibe coding.

# Thank you!

Maurizio.Costabile@adelaide.edu.au

OR



# Thank you for your participation!



## Upcoming webinars



Link to evaluation

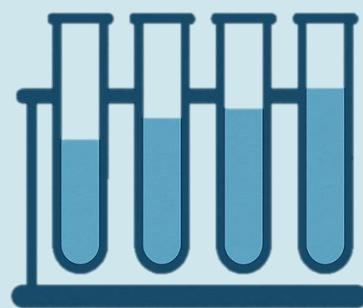


### Present-day Practicals webinar series '25/'26

- |                                                         |               |
|---------------------------------------------------------|---------------|
| 1. How do students truly learn in the lab?              | Thu 06/11/'25 |
| 2. Extended reality in lab education                    | Thu 20/11/'25 |
| 3. Refocusing labs: from cookbook to open inquiry       | Tue 02/12/'25 |
| 4. Fostering sustainability in lab education            | Tue 13/01/'26 |
| 5. Artificial intelligence in lab education             | Thu 29/01/'26 |
| 6. Student Research Hub for interdisciplinary education | Tue 17/02/'26 |



Thu 19/03/'26


Enhancing lab education with **LabBuddy**



# THANK YOU

for attending  
this webinar

PRESENT-DAY  
PRACTICALS

